MIT Food Computers

From MIT:   The Food Computer is a controlled-environment agriculture technology platform that uses robotic systems to control and monitor climate, energy, and plant growth inside of a specialized growing chamber. Climate variables such as carbon dioxide, air temperature, humidity, dissolved oxygen, potential hydrogen, electrical conductivity, and root-zone temperature are among the many conditions that can be controlled and monitored within the growing chamber. Operational energy, water, and mineral consumption are monitored (and adjusted) through electrical meters, flow sensors, and controllable chemical dosers throughout the growth period. Each specific set of conditions can be thought of as a climate recipe, and each recipe produces unique results in the phenotypes of the plants. Plants grown under different conditions may vary in color, size, texture growth rate, yield, flavor, and nutrient density. Food Computers can even program biotic and abiotic stresses, such as an induced drought, to create desired plant-based expressions... (project homepage)

The Additive Manufactured Excavator Design Competition

The additive excavator cab design competition had very few limitations on the cab design and essentially encouraged students to showcase our skills and ideas. We could create something totally unique, aesthetically pleasing, yet functional to showcase the capabilities of additive manufacturing

How Big Area Additive Manufacturing is Enabling Automotive Microfactories

Ian Wright for Engineering.com:  Make no mistake, 3D printing is changing manufacturing. Although it may take years before we see the full impact of bringing this technology from rapid prototyping to full-scale production, there are already hints of big things to come. Take Local Motors’ recent purchase of two Big Area Additive Manufacturing (BAAM) systems from Cincinnati Incorporated (CI) as an example. The former company designs, builds and sells custom vehicles out of its US-based microfactories. The latter is a century-old manufacturer of metal fabrication tools and, more recently, BAAM.   Cont'd...

Computational Hydrographic Printing

From Yizhong Zhang, Chunji Yin, Changxi Zheng, Kun Zhou's paper:   Hydrographic printing is a well-known technique in industry for transferring color inks on a thin film to the surface of a manufactured 3D object. It enables high-quality coloring of object surfaces and works with a wide range of materials, but suffers from the inability to accurately register color texture to complex surface geometries. Thus, it is hardly usable by ordinary users with customized shapes and textures. We present computational hydrographic printing, a new method that inherits the versatility of traditional hydrographic printing, while also enabling precise alignment of surface textures to possibly complex 3D surfaces. In particular, we propose the first computational model for simulating hydrographic printing process. This simulation enables us to compute a color image to feed into our hydrographic system for precise texture registration. We then build a physical hydrographic system upon off-the-shelf hardware, integrating virtual simulation, object calibration and controlled immersion. To overcome the difficulty of handling complex surfaces, we further extend our method to enable multiple immersions, each with a different object orientation, so the combined colors of individual immersions form a desired texture on the object surface. We validate the accuracy of our computational model through physical experiments, and demonstrate the efficacy and robustness of our system using a variety of objects with complex surface textures...  (full paper)

Direct Marking for FDA UDI Compliance

Understanding Permanent Marks and Methods for UDI Marking and Verification

Basic Assembly Skills Are as Important as Ever, Even in This Technology-heavy Era

Whatever advancements the future holds, production facilities will continue to need individuals who have a wide range of basic assembly skills and those individuals will always be indispensable.

Carnegie Mellon Taps Private Gift for Engineering Simulation Center

Dian Schaffhauser for Campus Technology:  Carnegie Mellon University has launched a new collaboration with Ansys, a global company that produces software for engineering simulation. Under the terms of the agreement, the company will endow a new "Ansys Career Development Chair" in the College of Engineering and help fund a new building dedicated to the study of Industry 4.0. That facility will bring together faculty, students, researchers and corporate participants. Industry 4.0 is the name given to a movement that uses sensor, robotic, simulation and other innovative technologies to shrink development cycles and transform product design, development and manufacturing. The new 30,000 square foot facility, which will be known as the Ansys Building, is intended to expand the "making" capabilities of the college by adding a simulation and collaboration lab and a large open bay facility for undergraduate students to build full-scale projects. That open bay facility will be next door to the fabrication and machining facilities of the Hamerschlag Hall MakerWing, announced in December, where students will be able to make their components and then assemble them into larger systems.   Cont'd...

Consider This When Buying a New VMC

The best vertical machining center for you is the one that meets your needs. Therefore, the first step when shopping for VMCs is to clearly determine what you need the machine to do.

How Small Manufacturers Can Leverage Smart Manufacturing

Andrew Waycott for Industry Week:  I see three ways in which smaller manufacturers can leverage Smart Manufacturing.  The first is the way applicable to all manufacturers—using today’s affordable sensors to get better data, then using that data to fine-tune the process, decrease variability and remove bottlenecks. All of these bring costs down and drive quality up. Now let’s talk about the other two ways—ways that are specific to the smaller manufacturer. Smaller manufacturers have the edge in building volumes of one—in other words, customized orders. For many smaller manufacturers, the look is less assembly line and more set of work stations. This means that the operator in a smaller plant typically makes more decisions. It’s a more people-oriented process.   Cont'd...

3D printing of patterned membranes opens door to rapid advances in membrane technology

Penn State Materials Research Institute via Science Daily:  A new type of 3D printing developed by researchers at Penn State will make it possible for the first time to rapidly prototype and test polymer membranes that are patterned for improved performance. Ion exchange membranes are used in many types of energy applications, such as fuel cells and certain batteries, as well as in water purification, desalination, removal of heavy metals and food processing. Most ion exchange membranes are thin, flat sheets similar to the plastic wrap in your kitchen drawer. However, recent work has shown that by creating 3D patterns on top of the 2D membrane surface, interesting hydrodynamic properties emerge that can improve ion transport or mitigate fouling, a serious problem in many membrane applications. Currently, making these patterned membranes, also called profiled membranes, involves a laborious process of etching a silicon mold with the desired pattern, pouring in the polymer and waiting until it hardens. The process is both time-consuming and expensive, and results in a single pattern type. “We thought if we could use 3D printing to fabricate our custom-synthesized ion exchange membranes, we could make any sort of pattern and we could make it quickly,” says Michael Hickner, associate professor of materials science and engineering at Penn State.   Cont'd...

The Advantages Of Using 3D Printing For Creating Your First Product Prototype

Why is accessible 3D printing so beneficial for first-time entrepreneurs? Read on for some answers.

Bosch Rexroth launches Industry 4.0 training rigs

The Engineer:  Bosch Rexroth has launched a new range of training rigs designed to help students get up to speed with the internet of things (IoT) and Industry 4.0. The rigs will form part of the company’s Drive & Control Academy programme and are built with industry-grade components. Aimed specifically at educational and industrial institutions, the rigs are tailored towards students and teachers as well as customers and employees, designed to assist with the adoption of Industry 4.0 practices. According to Bosch Rexroth, the modular hydraulic, pneumatic and mechatronic systems simulate a complete production process, combining several elements that can be operated individually or together. The physical rigs are accompanied by corresponding exercises, eLearning, project manuals and other supporting material. “The launch of our new training rigs offering is market leading and aims to provide the younger generation with a better understanding in the future of manufacturing,” said Richard Chamberlain, product manager service at Bosch Rexroth. “We firmly believe our industry grade training rigs will equip students with the ability to stay ahead of the curve. Our course material helps guide trainees through consecutive steps that build on one another, which means motivation remains high.”   Cont'd...

New dual-step method provides 3D printing of conductive metals.

Shalini Saxena for ArsTechnica:  Customizable, wearable electronics open the door to things like heart-monitoring t-shirts and health-tracking bracelets. But placing the needed wiring in a complex 3D architecture has been hard to do cheaply. Existing approaches are limited by material requirements and, in the case of 3D writing, slow printing speeds. Recently, a research team at Harvard University developed a new method to rapidly 3D print free-standing, highly conductive, ductile metallic wires. The new method combines 3D printing with focused infrared lasers that quickly anneal the printed nanoparticles into the desired architecture. The result is a wire with an electrical conductivity that approaches that of bulk silver.   Cont'd...

Foxconn Replaces 60,000 Labourers With Robots in China

Subhrojit Mallick  for GIZMODO India:   Apple and Samsung phone manufacturer, Foxconn has already taken a step towards the dystopian future. The South China Morning Post reported the manufacturing giant has replaced 60,000 laborers with robots. The total strength of Foxconn factory workers reduced from 110,000 to 50,000, marking a huge shift towards automation of routine jobs.  The Foxconn technology group confirmed to the BBC that they are automating many of the manufacturing tasks associated with their operations by introducing robots. However, they maintained the move will not affect long-term job losses.    Cont'd...

Symmetric Multiprocessing or Virtualization: Maximizing the Value and Power of a Soft-Control Architecture

For a truly simplified and streamlined architecture that is high-performing, scalable, efficient. and built for long-term value, an SMP-enabled Soft-Control Architecture is recommended.

Records 2521 to 2535 of 2810

First | Previous | Next | Last

Featured Product

T.J. Davies' Retention Knobs

T.J. Davies' Retention Knobs

Our retention knobs are manufactured above international standards or to machine builder specifications. Retention knobs are manufactured utilizing AMS-6274/AISI-8620 alloy steel drawn in the United States. Threads are single-pointed on our lathes while manufacturing all other retention knob features to ensure high concentricity. Our process ensures that our threads are balanced (lead in/lead out at 180 degrees.) Each retention knob is carburized (hardened) to 58-62HRC, and case depth is .020-.030. Core hardness 40HRC. Each retention knob is coated utilizing a hot black oxide coating to military specifications. Our retention knobs are 100% covered in black oxide to prevent rust. All retention knob surfaces (not just mating surfaces) have a precision finish of 32 RMA micro or better: ISO grade 6N. Each retention knob is magnetic particle tested and tested at 2.5 times the pulling force of the drawbar. Certifications are maintained for each step in the manufacturing process for traceability.